Properties

Label 6.6.820125.1-71.6-a2
Base field 6.6.820125.1
Conductor norm \( 71 \)
CM no
Base change no
Q-curve no
Torsion order \( 2 \)
Rank \( 0 \)

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Base field 6.6.820125.1

Generator \(a\), with minimal polynomial \( x^{6} - 9 x^{4} - 4 x^{3} + 9 x^{2} + 3 x - 1 \); class number \(1\).

Copy content comment:Define the base number field
 
Copy content sage:R.<x> = PolynomialRing(QQ); K.<a> = NumberField(R([-1, 3, 9, -4, -9, 0, 1]))
 
Copy content gp:K = nfinit(Polrev([-1, 3, 9, -4, -9, 0, 1]));
 
Copy content magma:R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![-1, 3, 9, -4, -9, 0, 1]);
 

Weierstrass equation

\({y}^2+\left(\frac{12}{19}a^{5}+\frac{11}{19}a^{4}-\frac{109}{19}a^{3}-\frac{140}{19}a^{2}+\frac{100}{19}a+\frac{77}{19}\right){x}{y}+\left(\frac{11}{19}a^{5}-\frac{1}{19}a^{4}-\frac{92}{19}a^{3}-\frac{46}{19}a^{2}+\frac{60}{19}a+\frac{31}{19}\right){y}={x}^{3}+\left(-\frac{8}{19}a^{5}-\frac{1}{19}a^{4}+\frac{60}{19}a^{3}+\frac{49}{19}a^{2}+\frac{3}{19}a-\frac{26}{19}\right){x}^{2}+\left(\frac{18}{19}a^{5}+\frac{26}{19}a^{4}-\frac{192}{19}a^{3}-\frac{267}{19}a^{2}+\frac{131}{19}a-\frac{8}{19}\right){x}-5a^{3}-2a^{2}+18a-4\)
Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([K([77/19,100/19,-140/19,-109/19,11/19,12/19]),K([-26/19,3/19,49/19,60/19,-1/19,-8/19]),K([31/19,60/19,-46/19,-92/19,-1/19,11/19]),K([-8/19,131/19,-267/19,-192/19,26/19,18/19]),K([-4,18,-2,-5,0,0])])
 
Copy content gp:E = ellinit([Polrev([77/19,100/19,-140/19,-109/19,11/19,12/19]),Polrev([-26/19,3/19,49/19,60/19,-1/19,-8/19]),Polrev([31/19,60/19,-46/19,-92/19,-1/19,11/19]),Polrev([-8/19,131/19,-267/19,-192/19,26/19,18/19]),Polrev([-4,18,-2,-5,0,0])], K);
 
Copy content magma:E := EllipticCurve([K![77/19,100/19,-140/19,-109/19,11/19,12/19],K![-26/19,3/19,49/19,60/19,-1/19,-8/19],K![31/19,60/19,-46/19,-92/19,-1/19,11/19],K![-8/19,131/19,-267/19,-192/19,26/19,18/19],K![-4,18,-2,-5,0,0]]);
 

This is a global minimal model.

Copy content comment:Test whether it is a global minimal model
 
Copy content sage:E.is_global_minimal_model()
 

Mordell-Weil group structure

\(\Z/{2}\Z\)

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$\left(-\frac{53}{38} a^{5} + \frac{39}{76} a^{4} + \frac{909}{76} a^{3} + \frac{65}{76} a^{2} - \frac{186}{19} a + \frac{7}{76} : \frac{1}{152} a^{5} + \frac{11}{19} a^{4} - \frac{55}{152} a^{3} - \frac{683}{152} a^{2} + \frac{363}{152} a + \frac{58}{19} : 1\right)$$0$$2$

Invariants

Conductor: $\frak{N}$ = \((-24/19a^5+16/19a^4+199/19a^3-24/19a^2-162/19a-21/19)\) = \((-24/19a^5+16/19a^4+199/19a^3-24/19a^2-162/19a-21/19)\)
Copy content comment:Compute the conductor
 
Copy content sage:E.conductor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Conductor norm: $N(\frak{N})$ = \( 71 \) = \(71\)
Copy content comment:Compute the norm of the conductor
 
Copy content sage:E.conductor().norm()
 
Copy content gp:idealnorm(K, ellglobalred(E)[1])
 
Copy content magma:Norm(Conductor(E));
 
Discriminant: $\Delta$ = $781/19a^5-33/19a^4-6931/19a^3-2601/19a^2+5438/19a+1118/19$
Discriminant ideal: $\frak{D}_{\mathrm{min}} = (\Delta)$ = \((781/19a^5-33/19a^4-6931/19a^3-2601/19a^2+5438/19a+1118/19)\) = \((-24/19a^5+16/19a^4+199/19a^3-24/19a^2-162/19a-21/19)^{6}\)
Copy content comment:Compute the discriminant
 
Copy content sage:E.discriminant()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Discriminant norm: $N(\frak{D}_{\mathrm{min}}) = N(\Delta)$ = \( 128100283921 \) = \(71^{6}\)
Copy content comment:Compute the norm of the discriminant
 
Copy content sage:E.discriminant().norm()
 
Copy content gp:norm(E.disc)
 
Copy content magma:Norm(Discriminant(E));
 
j-invariant: $j$ = \( -\frac{156831929359541405397}{2433905394499} a^{5} - \frac{150395003262395600328}{2433905394499} a^{4} + \frac{1274931496457544507273}{2433905394499} a^{3} + \frac{1855892975254178590359}{2433905394499} a^{2} + \frac{329513252750777598723}{2433905394499} a - \frac{168438420445546290933}{2433905394499} \)
Copy content comment:Compute the j-invariant
 
Copy content sage:E.j_invariant()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Endomorphism ring: $\mathrm{End}(E)$ = \(\Z\)   
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$ = \(\Z\)    (no potential complex multiplication)
Copy content comment:Test for Complex Multiplication
 
Copy content sage:E.has_cm(), E.cm_discriminant()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$= \( 0 \)
Copy content comment:Compute the Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content magma:Rank(E);
 
Mordell-Weil rank: $r$ = \(0\)
Regulator: $\mathrm{Reg}(E/K)$ = \( 1 \)
Néron-Tate Regulator: $\mathrm{Reg}_{\mathrm{NT}}(E/K)$ = \( 1 \)
Global period: $\Omega(E/K)$ \( 1046.6006091913915317720046427088967971 \)
Tamagawa product: $\prod_{\frak{p}}c_{\frak{p}}$= \( 2 \)
Torsion order: $\#E(K)_{\mathrm{tor}}$= \(2\)
Special value: $L^{(r)}(E/K,1)/r!$ \( 2.31138 \)
Analytic order of Ш: Ш${}_{\mathrm{an}}$= \( 4 \) (rounded)

BSD formula

$$\begin{aligned}2.311380000 \approx L(E/K,1) & \overset{?}{=} \frac{ \# ะจ(E/K) \cdot \Omega(E/K) \cdot \mathrm{Reg}_{\mathrm{NT}}(E/K) \cdot \prod_{\mathfrak{p}} c_{\mathfrak{p}} } { \#E(K)_{\mathrm{tor}}^2 \cdot \left|d_K\right|^{1/2} } \\ & \approx \frac{ 4 \cdot 1046.600609 \cdot 1 \cdot 2 } { {2^2 \cdot 905.607531} } \\ & \approx 2.311377884 \end{aligned}$$

Local data at primes of bad reduction

Copy content comment:Compute the local reduction data at primes of bad reduction
 
Copy content sage:E.local_data()
 
Copy content magma:LocalInformation(E);
 

This elliptic curve is semistable. There is only one prime $\frak{p}$ of bad reduction.

$\mathfrak{p}$ $N(\mathfrak{p})$ Tamagawa number Kodaira symbol Reduction type Root number \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{N}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathfrak{D}_{\mathrm{min}}\)) \(\mathrm{ord}_{\mathfrak{p}}(\mathrm{den}(j))\)
\((-24/19a^5+16/19a^4+199/19a^3-24/19a^2-162/19a-21/19)\) \(71\) \(2\) \(I_{6}\) Non-split multiplicative \(1\) \(1\) \(6\) \(6\)

Galois Representations

The mod \( p \) Galois Representation has maximal image for all primes \( p < 1000 \) except those listed.

prime Image of Galois Representation
\(2\) 2B
\(3\) 3B.1.2

Isogenies and isogeny class

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3 and 6.
Its isogeny class 71.6-a consists of curves linked by isogenies of degrees dividing 6.

Base change

This elliptic curve is not a \(\Q\)-curve.

It is not the base change of an elliptic curve defined over any subfield.